Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 19(7): e1011527, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37523399

RESUMEN

Members of the spotted fever group rickettsia express four large, surface-exposed autotransporters, at least one of which is a known virulence determinant. Autotransporter translocation to the bacterial outer surface, also known as type V secretion, involves formation of a ß-barrel autotransporter domain in the periplasm that inserts into the outer membrane to form a pore through which the N-terminal passenger domain is passed and exposed on the outer surface. Two major surface antigens of Rickettsia rickettsii, are known to be surface exposed and the passenger domain cleaved from the autotransporter domain. A highly passaged strain of R. rickettsii, Iowa, fails to cleave these autotransporters and is avirulent. We have identified a putative peptidase, truncated in the Iowa strain, that when reconstituted into Iowa restores appropriate processing of the autotransporters as well as restoring a modest degree of virulence.


Asunto(s)
Rickettsia rickettsii , Sistemas de Secreción Tipo V , Rickettsia rickettsii/genética , Sistemas de Secreción Tipo V/genética , Péptido Hidrolasas , Proteínas de la Membrana Bacteriana Externa , Factores de Virulencia
2.
mSystems ; 7(1): e0136121, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35076271

RESUMEN

Analysis of 16S rRNA (rRNA) genes provides a central means of taxonomic classification of bacterial species. Based on presumed sequence identity among species of the Bacillus cereus sensu lato group, the 16S rRNA genes of B. anthracis have been considered unsuitable for diagnosis of the anthrax pathogen. With the recent identification of a single nucleotide polymorphism in some 16S rRNA gene copies, specific identification of B. anthracis becomes feasible. Here, we designed and evaluated a set of in situ, in vitro, and in silico assays to assess the unknown 16S state of B. anthracis from different perspectives. Using a combination of digital PCR, fluorescence in situ hybridization, long-read genome sequencing, and bioinformatics, we were able to detect and quantify a unique 16S rRNA gene allele of B. anthracis (16S-BA-allele). This allele was found in all available B. anthracis genomes and may facilitate differentiation of the pathogen from any close relative. Bioinformatics analysis of 959 B. anthracis SRA data sets inferred that abundances and genomic arrangements of the 16S-BA-allele and the entire rRNA operon copy numbers differ considerably between strains. Expression ratios of 16S-BA-alleles were proportional to the respective genomic allele copy numbers. The findings and experimental tools presented here provide detailed insights into the intra- and intergenomic diversity of 16S rRNA genes and may pave the way for improved identification of B. anthracis and other pathogens with diverse rRNA operons. IMPORTANCE For severe infectious diseases, precise pathogen detection is crucial for antibiotic therapy and patient survival. Identification of Bacillus anthracis, the causative agent of the zoonosis anthrax, can be challenging when querying specific nucleotide sequences such as in small subunit rRNA (16S rRNA) genes, which are commonly used for typing of bacteria. This study analyzed on a broad genomic scale a cryptic and hitherto underappreciated allelic variant of the bacterium's 16S rRNA genes and their transcripts using a set of in situ, in vitro, and in silico assays and found significant intra- and intergenomic heterogeneity in the distribution of the allele and overall rRNA operon copy numbers. This allelic variation was uniquely species specific, which enabled sensitive pathogen detection on both DNA and transcript levels. The methodology used here is likely also applicable to other pathogens that are otherwise difficult to discriminate from their less harmful relatives.


Asunto(s)
Carbunco , Bacillus anthracis , Bacillus , Humanos , Carbunco/diagnóstico , ARN Ribosómico 16S/genética , Genes de ARNr , Hibridación Fluorescente in Situ
3.
PLoS Pathog ; 16(5): e1008582, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32421751

RESUMEN

Fragmentation of the Golgi apparatus is observed during a number of physiological processes including mitosis and apoptosis, but also occurs in pathological states such as neurodegenerative diseases and some infectious diseases. Here we show that highly virulent strains of Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, induce selective fragmentation of the trans-Golgi network (TGN) soon after infection of host cells by secretion of the effector protein Rickettsial Ankyrin Repeat Protein 2 (RARP2). Remarkably, this fragmentation is pronounced for the trans-Golgi network but the cis-Golgi remains largely intact and appropriately localized. Thus R. rickettsii targets specifically the TGN and not the entire Golgi apparatus. Dispersal of the TGN is mediated by the secreted effector protein RARP2, a recently identified type IV secreted effector that is a member of the clan CD cysteine proteases. Site-directed mutagenesis of a predicted cysteine protease active site in RARP2 prevents TGN disruption. General protein transport to the cell surface is severely impacted in cells infected with virulent strains of R. rickettsii. These findings suggest a novel manipulation of cellular organization by an obligate intracellular bacterium to determine interactions with the host cell.


Asunto(s)
Rickettsia rickettsii/metabolismo , Fiebre Maculosa de las Montañas Rocosas/metabolismo , Red trans-Golgi , Animales , Chlorocebus aethiops , Fiebre Maculosa de las Montañas Rocosas/patología , Células Vero , Red trans-Golgi/metabolismo , Red trans-Golgi/microbiología , Red trans-Golgi/ultraestructura
4.
PLoS One ; 15(3): e0230057, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32142548

RESUMEN

The rapid and reliable diagnostics of highly pathogenic bacteria under restricted field conditions poses one of the major challenges to medical biodefense, especially since false positive or false negative reports might have far-reaching consequences. Fluorescence in situ hybridization (FISH) has the potential to represent a powerful microscopy-based addition to the existing molecular-based diagnostic toolbox. In this study, we developed a set of FISH-probes for the fast, matrix independent and simultaneous detection of thirteen highly pathogenic bacteria in different environmental and clinical sample matrices. Furthermore, we substituted formamide, a routinely used chemical that is toxic and volatile, by non-toxic urea. This will facilitate the application of FISH under resource limited field laboratory conditions. We demonstrate that hybridizations performed with urea show the same specificity and comparable signal intensities for the FISH-probes used in this study. To further simplify the use of FISH in the field, we lyophilized the reagents needed for FISH. The signal intensities obtained with these lyophilized reagents are comparable to freshly prepared reagents even after storage for a month at room temperature. Finally, we show that by the use of non-toxic lyophilized field (NOTIFy)-FISH, specific detection of microorganisms with simple and easily transportable equipment is possible in the field.


Asunto(s)
Bacterias/genética , Armas Biológicas/clasificación , Hibridación Fluorescente in Situ/métodos , Algoritmos , Animales , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Formamidas/química , Liofilización , Piel/microbiología , Piel/patología , Porcinos , Temperatura , Urea/química
5.
mBio ; 9(3)2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29946049

RESUMEN

Strains of Rickettsia rickettsii, the tick-borne agent of Rocky Mountain spotted fever, vary considerably in virulence. Genomic comparisons of R. rickettsii strains have identified a relatively small number of genes divergent in an avirulent strain. Among these is one annotated as Rickettsia ankyrin repeat protein 2 (RARP-2). Homologs of RARP-2 are present in all strains of R. rickettsii, but the protein in the avirulent strain Iowa contains a large internal deletion relative to the virulent Sheila Smith strain. RARP-2 is secreted in a type IV secretion system-dependent manner and exposed to the host cell cytosol. RARP-2 of Sheila Smith colocalizes with multilamellar membranous structures bearing markers of the endoplasmic reticulum (ER), whereas the Iowa protein shows no colocalization with host cell organelles and evidence of proteolytic degradation is detected. Overexpression of Sheila Smith RARP-2 in R. rickettsii Iowa converts this avirulent strain's typically nonlytic or opaque plaque type to a lytic plaque phenotype similar to that of the virulent Sheila Smith strain. Mutation of a predicted proteolytic active site of Sheila Smith RARP-2 abolished the lytic plaque phenotype but did not eliminate association with host membrane. RARP-2 is thus a type IV secreted effector and released from the rickettsiae into the host cytosol to modulate host processes during infection. Overexpression of Sheila Smith RARP-2 did not, however, restore the virulence of the Iowa strain in a guinea pig model, likely due to the multifactorial nature of rickettsial virulence.IMPORTANCE Members of the genus Rickettsia are obligate intracellular bacteria that exhibit a range of virulence from harmless endosymbionts of arthropods to the etiologic agents of severe disease. Despite the growing number of available genomes, little is known regarding virulence determinants of rickettsiae. Here, we have characterized an ankyrin repeat-containing protein, RARP-2, which differs between a highly virulent and an avirulent strain of R. rickettsii, the agent of Rocky Mountain spotted fever. RARP-2 is secreted by a type IV secretion system into the cytosol of the host cell, where it interacts with and manipulates the structure of the endoplasmic reticulum. RARP-2 from the avirulent strain is truncated by the loss of seven of 10 ankyrin repeat units but, although secreted, fails to alter ER structure. Recognition of those rickettsial factors associated with virulence will facilitate understanding of regional and strain-specific variation in severity of disease.


Asunto(s)
Proteínas Bacterianas/metabolismo , Retículo Endoplásmico/metabolismo , Rickettsia rickettsii/metabolismo , Sistemas de Secreción Tipo IV/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Retículo Endoplásmico/genética , Femenino , Cobayas , Humanos , Transporte de Proteínas , Rickettsia rickettsii/química , Rickettsia rickettsii/genética , Rickettsia rickettsii/patogenicidad , Fiebre Maculosa de las Montañas Rocosas/microbiología , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/genética , Virulencia
6.
PLoS Negl Trop Dis ; 12(2): e0006151, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29432420

RESUMEN

Rickettsia (R.) helvetica is the most prevalent rickettsia found in Ixodes ricinus ticks in Germany. Several studies reported antibodies against R. helvetica up to 12.5% in humans investigated, however, fulminant clinical cases are rare indicating a rather low pathogenicity compared to other rickettsiae. We investigated growth characteristics of R. helvetica isolate AS819 in two different eukaryotic cell lines with focus on ultra-structural changes of host cells during infection determined by confocal laser scanning microscopy. Further investigations included partially sequencing of rickA, sca4 and sca2 genes, which have been reported to encode proteins involved in cell-to-cell spread and virulence in some rickettsiae. R. helvetica grew constantly but slowly in both cell lines used. Confocal laser scanning microscopy revealed that the dissemination of R. helvetica AS819 in both cell lines was rather mediated by cell break-down and bacterial release than cell-to-cell spread. The cytoskeleton of both investigated eukaryotic cell lines was not altered. R. helvetica possesses rickA, but its expression is not sufficient to promote actin-based motility as demonstrated by confocal laser scanning microscopy. Hypothetical Sca2 and Sca4 proteins were deduced from nucleotide gene sequences but the predicted amino acid sequences were disrupted or truncated compared to other rickettsiae most likely resulting in non-functional proteins. Taken together, these results might give a first hint to the underlying causes of the reduced virulence and pathogenicity of R. helvetica.


Asunto(s)
Células Epiteliales/parasitología , Células Epiteliales/ultraestructura , Fibroblastos/parasitología , Fibroblastos/ultraestructura , Interacciones Huésped-Patógeno , Rickettsia/crecimiento & desarrollo , Animales , Ataxina-2/genética , Proteínas Bacterianas/genética , Línea Celular , Chlorocebus aethiops , Alemania , Ixodes/parasitología , Ratones , Microscopía Confocal , Rickettsia/genética , Rickettsia/aislamiento & purificación
7.
J Med Microbiol ; 67(4): 537-542, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29461187

RESUMEN

PURPOSE: Infective endocarditis is a severe and potentially fatal disease. Nearly a third of all cases remain culture-negative, making a targeted and effective antibiotic therapy of patients challenging. In the past years, fluorescence in situ hybridization (FISH) has proven its value for the diagnosis of infective endocarditis, particularly when it is caused by fastidious bacteria. To increase the number of infective endocarditis causing agents, which can be identified by FISH, we designed and optimized a FISH-probe for the specific detection of Coxiella burnetii in heart valve tissue. METHODOLOGY: Even with specific probes the detection and identification of bacteria can be complicated by the high autofluorescence due to calcification of the analysed tissue. To overcome this problem, we developed a protocol to detect C. burnetii by hybridizing, stripping and reprobing the identical section with different species-specific probes repeatedly.Results/Key findings. The newly designed specific FISH probe and the developed protocol exemplarily allowed us to unequivocally identify C. burnetii in tissue sections of a patient with infective endocarditis. CONCLUSION: This method provides an add-on to existing protocols for the unambiguous diagnosis of bacteria directly within tissues or other difficult tissue samples in cases with small sample size and limited sections.


Asunto(s)
Coxiella burnetii/aislamiento & purificación , Endocarditis Bacteriana/microbiología , Válvulas Cardíacas/microbiología , Hibridación Fluorescente in Situ/métodos , Fiebre Q/microbiología , Coxiella burnetii/genética , Endocarditis Bacteriana/diagnóstico , Humanos , Fiebre Q/diagnóstico
8.
Science ; 357(6352): 713-717, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28818949

RESUMEN

Contractile injection systems mediate bacterial cell-cell interactions by a bacteriophage tail-like structure. In contrast to extracellular systems, the type 6 secretion system (T6SS) is defined by intracellular localization and attachment to the cytoplasmic membrane. Here we used cryo-focused ion beam milling, electron cryotomography, and functional assays to study a T6SS in Amoebophilus asiaticus The in situ architecture revealed three modules, including a contractile sheath-tube, a baseplate, and an anchor. All modules showed conformational changes upon firing. Lateral baseplate interactions coordinated T6SSs in hexagonal arrays. The system mediated interactions with host membranes and may participate in phagosome escape. Evolutionary sequence analyses predicted that T6SSs are more widespread than previously thought. Our insights form the basis for understanding T6SS key concepts and exploring T6SS diversity.


Asunto(s)
Amoeba/microbiología , Bacteroidetes/fisiología , Sistemas de Secreción Tipo VI/química , Bacteriófagos/química , Bacteriófagos/ultraestructura , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Familia de Multigenes , Fagosomas/química , Fagosomas/ultraestructura , Filogenia , Conformación Proteica , Simbiosis , Sistemas de Secreción Tipo VI/clasificación , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/ultraestructura
9.
Int J Syst Evol Microbiol ; 66(5): 2090-2098, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26928956

RESUMEN

Two slow-growing, Gram-negative, non-motile, non-spore-forming, coccoid bacteria (strains F60T and F965), isolated in Austria from mandibular lymph nodes of two red foxes (Vulpes vulpes), were subjected to a polyphasic taxonomic analysis. In a recent study, both isolates were assigned to the genus Brucella but could not be attributed to any of the existing species. Hence, we have analysed both strains in further detail to determine their exact taxonomic position and genetic relatedness to other members of the genus Brucella. The genome sizes of F60T and F965 were 3 236 779 and 3 237 765 bp, respectively. Each genome consisted of two chromosomes, with a DNA G+C content of 57.2 %. A genome-to-genome distance of >80 %, an average nucleotide identity (ANI) of 97 % and an average amino acid identity (AAI) of 98 % compared with the type species Brucella melitensis confirmed affiliation to the genus. Remarkably, 5 % of the entire genetic information of both strains was of non-Brucella origin, including as-yet uncharacterized bacteriophages and insertion sequences as well as ABC transporters and other genes of metabolic function from various soil-living bacteria. Core-genome-based phylogenetic reconstructions placed the novel species well separated from all hitherto-described species of the genus Brucella, forming a long-branched sister clade to the classical species of Brucella. In summary, based on phenotypic and molecular data, we conclude that strains F60T and F965 are members of a novel species of the genus Brucella, for which the name Brucella vulpis sp. nov. is proposed, with the type strain F60T ( = BCCN 09-2T = DSM 101715T).


Asunto(s)
Brucella/clasificación , Zorros/microbiología , Ganglios Linfáticos/microbiología , Filogenia , Animales , Austria , Técnicas de Tipificación Bacteriana , Tipificación de Bacteriófagos , Composición de Base , Brucella/genética , Brucella/aislamiento & purificación , ADN Bacteriano/genética , Análisis de Secuencia de ADN
10.
PLoS One ; 11(1): e0146446, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26730960

RESUMEN

The giant tubeworm Riftia pachyptila lives in symbiosis with the chemoautotrophic gammaproteobacterium Cand. Endoriftia persephone. Symbionts are released back into the environment upon host death in high-pressure experiments, while microbial fouling is not involved in trophosome degradation. Therefore, we examined the antimicrobial effect of the tubeworm's trophosome and skin. The growth of all four tested Gram-positive, but only of one of the tested Gram-negative bacterial strains was inhibited by freshly fixed and degrading trophosome (incubated up to ten days at either warm or cold temperature), while no effect on Saccharomyces cerevisiae was observed. The skin did not show antimicrobial effects. A liquid chromatography-mass spectrometric analysis of the ethanol supernatant of fixed trophosomes lead to the tentative identification of the phospholipids 1-palmitoleyl-2-lyso-phosphatidylethanolamine, 2-palmitoleyl-1-lyso-phosphatidylethanolamine and the free fatty acids palmitoleic, palmitic and oleic acid, which are known to have an antimicrobial effect. As a result of tissue autolysis, the abundance of the free fatty acids increased with longer incubation time of trophosome samples. This correlated with an increasing growth inhibition of Bacillus subtilis and Listeria welshimeri, but not of the other bacterial strains. Therefore, the free fatty acids produced upon host degradation could be the cause of inhibition of at least these two bacterial strains.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Listeria/crecimiento & desarrollo , Poliquetos/metabolismo , Simbiosis/fisiología , Animales , Ácidos Grasos no Esterificados/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Piel/metabolismo
11.
Environ Microbiol ; 17(4): 1397-413, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25212454

RESUMEN

Chlamydiae are a highly successful group of obligate intracellular bacteria infecting a variety of eukaryotic hosts. Outer membrane proteins involved in attachment to and uptake into host cells, and cross-linking of these proteins via disulfide bonds are key features of the biphasic chlamydial developmental cycle. In this study, we used a consensus approach to predict outer membrane proteins in the genomes of members of three chlamydial families. By analysing outer membrane protein fractions of purified chlamydiae with highly sensitive mass spectrometry, we show that the protein composition differs strongly between these organisms. Large numbers of major outer membrane protein-like proteins are present at high abundance in the outer membrane of Simkania negevensis and Waddlia chondrophila, whereas yet uncharacterized putative porins dominate in Parachlamydia acanthamoebae. Simkania represents the first case of a chlamydia completely lacking stabilizing cysteine-rich proteins in its outer membrane. In agreement with this, and in contrast to Parachlamydia and Waddlia, the cellular integrity of Simkania is not impaired by conditions that reduce disulfide bonds of these proteins. The observed differences in the protein composition of the outer membrane among members of divergent chlamydial families suggest different stabilities of these organisms in the environment, probably due to adaption to different niches or transmission routes.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Chlamydia/genética , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Chlamydia/química , Chlamydia/clasificación , Chlamydia/metabolismo , Secuencia Conservada , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia
12.
ISME J ; 8(8): 1634-44, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24500618

RESUMEN

Amoebae serve as hosts for various intracellular bacteria, including human pathogens. These microbes are able to overcome amoebal defense mechanisms and successfully establish a niche for replication, which is usually the cytoplasm. Here, we report on the discovery of a bacterial symbiont that is located inside the nucleus of its Hartmannella sp. host. This symbiont, tentatively named 'Candidatus Nucleicultrix amoebiphila', is only moderately related to known bacteria (∼90% 16S and 23S rRNA sequence similarity) and member of a novel clade of protist symbionts affiliated with the Rickettsiales and Rhodospirillales. Screening of 16S rRNA amplicon data sets revealed a broad distribution of these bacteria in freshwater and soil habitats. 'Candidatus Nucleicultrix amoebiphila' traffics within 6 h post infection to the host nucleus. Maximum infection levels are reached after 96-120 h, at which time point the nucleus is pronouncedly enlarged and filled with bacteria. Transmission of the symbionts occurs vertically upon host cell division but may also occur horizontally through host cell lysis. Although we observed no impact on the fitness of the original Hartmannella sp. host, the bacteria are rather lytic for Acanthamoeba castellanii. Intranuclear symbiosis is an exceptional phenomenon, and amoebae represent an ideal model system to further investigate evolution and underlying molecular mechanisms of these unique microbial associations.


Asunto(s)
Alphaproteobacteria/clasificación , Núcleo Celular/microbiología , Hartmannella/microbiología , Acanthamoeba/microbiología , Alphaproteobacteria/genética , Alphaproteobacteria/aislamiento & purificación , Hartmannella/ultraestructura , Especificidad del Huésped , Filogenia , Simbiosis
13.
Environ Microbiol ; 16(2): 417-29, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24118768

RESUMEN

Chlamydiae comprise important pathogenic and symbiotic bacteria that alternate between morphologically and physiologically different life stages during their developmental cycle. Using electron cryotomography, we characterize the ultrastructure of the developmental stages of three environmental chlamydiae: Parachlamydia acanthamoebae, Protochlamydia amoebophila and Simkania negevensis. We show that chemical fixation and dehydration alter the cell shape of Parachlamydia and that the crescent body is not a developmental stage, but an artefact of conventional electron microscopy. We further reveal type III secretion systems of environmental chlamydiae at macromolecular resolution and find support for a chlamydial needle-tip protein. Imaging bacteria inside their host cells by cryotomography for the first time, we observe marked differences in inclusion morphology and development as well as host organelle recruitment between the three chlamydial organisms, with Simkania inclusions being tightly enveloped by the host endoplasmic reticulum. The study demonstrates the power of electron cryotomography to reveal structural details of bacteria-host interactions that are not accessible using traditional methods.


Asunto(s)
Chlamydiales/ultraestructura , Crioultramicrotomía/métodos , Acanthamoeba castellanii/microbiología , Sistemas de Secreción Bacterianos , Retículo Endoplásmico/microbiología , Interacciones Huésped-Patógeno , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Mitocondrias/microbiología
14.
Nat Commun ; 4: 2856, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24292151

RESUMEN

Chlamydiae are important pathogens and symbionts with unique cell biological features. They lack the cell-division protein FtsZ, and the existence of peptidoglycan (PG) in their cell wall has been highly controversial. FtsZ and PG together function in orchestrating cell division and maintaining cell shape in almost all other bacteria. Using electron cryotomography, mass spectrometry and fluorescent labelling dyes, here we show that some environmental chlamydiae have cell wall sacculi consisting of a novel PG type. Treatment with fosfomycin (a PG synthesis inhibitor) leads to lower infection rates and aberrant cell shapes, suggesting that PG synthesis is crucial for the chlamydial life cycle. Our findings demonstrate for the first time the presence of PG in a member of the Chlamydiae. They also present a unique example of a bacterium with a PG sacculus but without FtsZ, challenging the current hypothesis that it is the absence of a cell wall that renders FtsZ non-essential.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlamydiales/metabolismo , Proteínas del Citoesqueleto/metabolismo , Peptidoglicano/metabolismo , Proteínas Bacterianas/genética , Pared Celular/química , Pared Celular/metabolismo , Pared Celular/ultraestructura , Chlamydiales/química , Chlamydiales/clasificación , Chlamydiales/ultraestructura , Proteínas del Citoesqueleto/genética , Peptidoglicano/química
15.
PLoS One ; 8(1): e55010, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23383036

RESUMEN

The Chlamydiae constitute an evolutionary well separated group of intracellular bacteria comprising important pathogens of humans as well as symbionts of protozoa. The amoeba symbiont Protochlamydia amoebophila lacks a homologue of the most abundant outer membrane protein of the Chlamydiaceae, the major outer membrane protein MOMP, highlighting a major difference between environmental chlamydiae and their pathogenic counterparts. We recently identified a novel family of putative porins encoded in the genome of P. amoebophila by in silico analysis. Two of these Protochlamydiaouter membrane proteins, PomS (pc1489) and PomT (pc1077), are highly abundant in outer membrane preparations of this organism. Here we show that all four members of this putative porin family are toxic when expressed in the heterologous host Escherichia coli. Immunofluorescence analysis using antibodies against heterologously expressed PomT and PomS purified directly from elementary bodies, respectively, demonstrated the location of both proteins in the outer membrane of P. amoebophila. The location of the most abundant protein PomS was further confirmed by immuno-transmission electron microscopy. We could show that pomS is transcribed, and the corresponding protein is present in the outer membrane throughout the complete developmental cycle, suggesting an essential role for P. amoebophila. Lipid bilayer measurements demonstrated that PomS functions as a porin with anion-selectivity and a pore size similar to the Chlamydiaceae MOMP. Taken together, our results suggest that PomS, possibly in concert with PomT and other members of this porin family, is the functional equivalent of MOMP in P. amoebophila. This work contributes to our understanding of the adaptations of symbiotic and pathogenic chlamydiae to their different eukaryotic hosts.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Chlamydiaceae/citología , Chlamydiaceae/metabolismo , Porinas/metabolismo , Simbiosis , Amoeba/microbiología , Proteínas Bacterianas/genética , Chlamydiaceae/genética , Chlamydiaceae/fisiología , Escherichia coli/genética , Membrana Dobles de Lípidos/metabolismo , Porinas/genética , Transporte de Proteínas , Transcripción Genética
16.
J Bacteriol ; 192(19): 5093-102, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20675479

RESUMEN

Chlamydiae are a group of obligate intracellular bacteria comprising several important human pathogens. Inside the eukaryotic cell, chlamydiae remain within a host-derived vesicular compartment, termed the inclusion. They modify the inclusion membrane through insertion of unique proteins, which are involved in interaction with and manipulation of the host cell. Among chlamydiae, inclusion membrane proteins have been exclusively found in members of the family Chlamydiaceae, which predominantly infect mammalian and avian hosts. Here, the presence of inclusion membrane proteins in Protochlamydia amoebophila UWE25, a chlamydial endosymbiont of free-living amoebae, is reported. A genome-wide screening for secondary structure motifs resulted in the identification of 23 putative inclusion membrane proteins for this organism. Immunofluorescence analysis demonstrated that five of these proteins were expressed, and four of them could be localized to a halo surrounding the intracellular bacteria. Colocalization studies showed an almost complete overlap of the signals obtained for the four putative inclusion membrane proteins, and immuno-transmission electron microscopy unambiguously demonstrated their location in the inclusion membrane. The presence of inclusion membrane proteins (designated IncA, IncQ, IncR, and IncS) in P. amoebophila shows that this strategy for host cell interaction is conserved among the chlamydiae and is used by chlamydial symbionts and pathogens alike.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlamydia/crecimiento & desarrollo , Chlamydia/metabolismo , Proteínas de la Membrana/metabolismo , Acanthamoeba castellanii/microbiología , Animales , Proteínas Bacterianas/genética , Western Blotting , Chlamydia/genética , Chlamydia/ultraestructura , Proteínas de la Membrana/genética , Microscopía Inmunoelectrónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...